skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MOCANU, IONELA G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper,Valiantrecognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output ofprobably approximately correct(PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-calledRepresentation Theoremexplored for single-agent and multi-agent epistemic logics with theonly knowingoperator to reduce modal reasoning to propositional reasoning. 
    more » « less
  2. null (Ed.)
    Robust learning in expressive languages with real-world data continues to be a challenging task. Numerous conventional methods appeal to heuristics without any assurances of robustness. While probably approximately correct (PAC) Semantics offers strong guarantees, learning explicit representations is not tractable, even in propositional logic. However, recent work on so-called “implicit learning has shown tremendous promise in terms of obtaining polynomial-time results for fragments of first-order logic. In this work, we extend implicit learning in PAC-Semantics to handle noisy data in the form of intervals and threshold uncertainty in the language of linear arithmetic. We prove that our extended framework keeps the existing polynomial-time complexity guarantees. Furthermore, we provide the first empirical investigation of this hitherto purely theoretical framework. Using benchmark problems, we show that our implicit approach to learning optimal linear programming objective constraints significantly outperforms an explicit approach in practice. 
    more » « less
  3. null (Ed.)
    Robustly learning in expressive languages with real-world data continues to be a challenging task. Numerous conventional methods appeal to heuristics without any assurances of robustness. While PAC-Semantics offers strong guarantees, learning explicit representations is not tractable even in a propositional setting. However, recent work on so-called "implicit" learning has shown tremendous promise in terms of obtaining polynomial-time results for fragments of first-order logic. In this work, we extend implicit learning in PAC-Semantics to handle noisy data in the form of intervals and threshold uncertainty in the language of linear arithmetic. We prove that our extended framework keeps the existing polynomial-time complexity guarantees. Furthermore, we provide the first empirical investigation of this hitherto purely theoretical framework. Using benchmark problems, we show that our implicit approach to learning optimal linear programming objective constraints significantly outperforms an explicit approach in practice. 
    more » « less
  4. To deploy knowledge-based systems in the real world, the challenge of knowledge acquisition must be addressed. Knowledge engineering by hand is a daunting task, so machine learning has been widely proposed as an alternative. However, machine learning has difficulty acquiring rules that feature the kind of exceptions that are prevalent in real-world knowledge. Moreover, it is conjectured to be impossible to reliably learn representations featuring a desirable level of expressiveness. Works by Khardon and Roth and by Juba proposed solutions to such problems by learning to reason directly, bypassing the intractable step of producing an explicit representation of the learned knowledge. These works focused on Boolean, propositional logics. In this work, we consider such implicit learning to reason for arithmetic theories, including logics considered with satisfiability modulo theory (SMT) solvers. We show that for standard fragments of linear arithmetic, we can learn to reason efficiently. These results are consequences of a more general finding: we show that there is an efficient reduction from the learning to reason problem for a logic to any sound and complete solver for that logic. 
    more » « less